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1. Introduction

In most neutrino oscillation experiments neutrinos propagate substantial distances in mat-

ter before reaching a detector, and therefore an accurate description of neutrino oscillations

in matter [1, 2] is an important ingredient of the analyses of the data. For a matter of an

arbitrary density profile the neutrino evolution equation admits no closed-form solution,

and one usually has to resort to numerical methods. While numerical integration of the

evolution equation usually poses no problem, it is still highly desirable to have approximate

analytic solutions, which may provide a significant insight into the physics of neutrino os-

cillations in matter, clarify the dependence of the oscillation probabilities on the neutrino

parameters and in many cases help save the CPU time. To this end, a number of analytic

solutions of the neutrino evolution equation in matter, based on various approximations,

has been developed (for recent studies, see e.g. [3 – 10]).

In this paper we derive a simple analytic expression for the two-flavour oscillation prob-

ability valid for an arbitrary matter density profile. We employ a perturbative approach

based on the expansion in a parameter which is small when the density changes relatively

slowly along the neutrino path and/or neutrino energy is not very close to the Mikheyev-

Smirnov-Wolfenstein (MSW) [1, 2] resonance energy. Our approximation is not equivalent

to the adiabatic approximation and actually goes beyond it. We demonstrate the validity of

our results using a few model density profiles, including the important PREM profile [11],

which gives a realistic description of matter density distribution inside the Earth. We

also show that, by combining the results obtained for the energies below and above the

MSW resonance ones, one can obtain an excellent description of neutrino oscillations in

matter in the entire energy range. The simple form of our result and the wide range of its

applicability are the two main advantages of this approach.

An approach similar to ours has been employed in [12, 7]. Unlike in those publications,

in the present work we do not confine ourselves to the leading approximation, but also
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calculate the first and second order corrections and show that this improves the accuracy

of the approximation drastically.

The paper is organized as follows. In section 2 we present the formalism used to derive

our analytic solution. In section 3 we apply this method to the case of a parabolic and a

power law matter potentials. In section 4 we present the results obtained in the case of the

realistic PREM Earth’s density profile. We discuss our results and conclude in section 5.

2. The formalism

In a number of important cases the full three-flavour neutrino oscillations can to a very

good accuracy be reduced to effective two-flavour ones. These include νe ↔ νµ(ντ ) os-

cillations either in the limit of vanishingly small 1-3 mixing, when the oscillations are

essentially driven by the “solar” parameters ∆m2
21 and θ12, or at sufficiently high energies

(E & 1 GeV for oscillations in the Earth), when the 1-2 mixing in matter is strongly sup-

pressed; in that case the oscillation probabilities are essentially independent of the “solar”

parameters and are governed by ∆m2
31 and θ13. For definiteness, in our numerical examples

we will concentrate on the second case, though our general discussion will be valid in both

situations.

Two-flavour oscillations of neutrinos in matter are described by the Schrödinger-like

evolution equation [1, 2]

i

(

ξ̇

η̇

)

=

(

−A B

B A

)(

ξ

η

)

, (2.1)

where the overdot denotes the differentiation with respect to the coordinate, and ξ and

η are respectively the probability amplitudes to find νe and νa, the latter being a linear

combination of νµ and ντ . In the limit when the 1-3 mixing vanishes, θ13 → 0, one has νa =

cos θ23νµ−sin θ23ντ , whereas in the situations when the solar parameters play practically no

role (e.g. for oscillations of high-energy neutrinos in the Earth), νa = sin θ23νµ + cos θ23ντ .

The quantities A and B in eq. (2.1) are

B = δ sin 2θ0 ,

A(x) = δ cos 2θ0 − V (x)/2 . (2.2)

Here the function A(x) depends on the electron number density Ne(x) through the Wolfen-

stein potential V (x) defined as

V (x) =
√

2GF Ne(x) ∼= 7.54 × 10−14 Ye(x) ρ(x)(g/cm3) eV,

where GF is the Fermi constant, ρ(x) is the mass density of matter and Ye(x) is the number

of electrons per nucleon. The parameter δ is defined as δ ≡ ∆m2/4E, and θ0 is the relevant

mixing angle in vacuum. In the limit θ13 → 0 one has ∆m2 = ∆m2
21, θ0 = θ12, and the

νe ↔ νµ(ντ ) oscillation probabilities are given by

P (νe → νµ;x) = P (νµ → νe;x) = cos2 θ23 P2(x) , (2.3)

P (νe → ντ ;x) = P (ντ → νe;x) = sin2 θ23 P2(x) . (2.4)
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Here P2(x) is the effective two-flavour oscillation probability:

P2(x) = P (νe → νa;x) ≡ |η(x)|2 (2.5)

(we assume the initial conditions ξ(0) = 1, η(0) = 0). For oscillations of high-energy

neutrinos in the Earth one has ∆m2 = ∆m2
31, θ0 = θ13, and the νe ↔ νµ(ντ ) oscillation

probabilities are

P (νe → νµ;x) = P (νµ → νe;x) = sin2 θ23 P2(x) , (2.6)

P (νe → ντ ;x) = P (ντ → νe;x) = cos2 θ23 P2(x) , (2.7)

where, as before, P2(x) is given by eq. (2.5).

Differentiating eq. (2.1), one can find decoupled second order differential equations for

ξ(x) and η(x) [13, 14]. The equation for the transition amplitude η(x) reads

η̈ + (ω2 + iȦ)η = 0 , (2.8)

where we have defined the function ω(x) as

ω2(x) = A2(x) + B2 . (2.9)

Note that the instantaneous eigenvalues of the effective Hamiltonian in eq. (2.1) are ±ω(x).

The equation for ξ(x) differs from eq. (2.8) by the sign of the Ȧ term.

It will be convenient for our purposes to rewrite eq. (2.8) in the following form:

η̈ + (ω2 − iω̇)η = (−i∆̇)η , (2.10)

where we have introduced the notation

∆̇ ≡ Ȧ + ω̇ . (2.11)

Eq. (2.10) cannot in general be solved exactly, but, as we shall see, it admits a simple

perturbative solution. To show that, let us first notice that, for energies (or densities)

above the MSW resonance one, the quantity ∆̇ on the right hand side of eq. (2.10) is small.

Indeed, from eqs. (2.9) and (2.2) it follows that for V/2 − cos 2θ0 δ ≫ sin 2θ0 δ (i.e. for

−A ≫ B) one has ω̇ ≃ −Ȧ, so that ∆̇ ≃ 0. The smallness of the parameter ∆̇ allows one

to solve eq. (2.10) perturbatively, order by order. Expanding in powers of ∆̇, we find the

equation for the nth order transition amplitude ηn (with n > 0):

η̈n + (ω2 − iω̇)ηn = (−i∆̇)ηn−1 . (2.12)

The zero order transition amplitude η0 satisfies the equation with the vanishing right hand

side:

η̈0 + (ω2 − iω̇)η0 = 0 . (2.13)

Its solution for an arbitrary functional dependence of ω(x) on the coordinate can be readily

found by considering the quantity X0 ≡ η̇0 − iωη0, which, as follows from (2.13), satisfies

– 3 –
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the first-order equation Ẋ0 + iωX0 = 0. Taking into account that the initial conditions

ξ(0) = 1, η(0) = 0 also imply, through eq. (2.1), η̇(0) = −iB, one finds

η0(x) = −iB eiφ(x)

∫ x

0
dx1 e−2iφ(x1) , (2.14)

where

φ(x) ≡
∫ x

0
ω(x′) dx′ . (2.15)

This yields the zero-order solution for the two-flavour transition probability P2(x) [12, 7]:

[P2(x)]0 ≡ |η0(x)|2 = B2

∣

∣

∣

∣

∫ x

0
dx1 e−2iφ(x1)

∣

∣

∣

∣

2

. (2.16)

Assuming that the amplitude ηn−1(x) on the right hand side of eq. (2.12) is known,

one can solve it for ηn. To this end, we introduce the quantity

Xn = η̇n − iωηn , (2.17)

in terms of which eq. (2.12) can be rewritten as

Ẋn + iωXn = (−i∆̇)ηn−1 . (2.18)

This can now be solved by the standard methods. First, we find the general solution of

the homogeneous equation

Ẋn + iωXn = 0 , (2.19)

which gives

Xn(x) = F e−iφ(x) (2.20)

with F an integration constant. Next, the solution of the inhomogenous equation (2.18) is

found by allowing F to depend on the coordinate x and substituting eq. (2.20) back into

eq. (2.18). Taking into account the initial condition F (0) = η̇(0) − iω(0)η(0) = −iB, one

finds

F (x) =

∫ x

0
dx1 eiφ(x1)

(

−i∆̇ (x1)
)

ηn−1 (x1) − iB . (2.21)

The solution for Xn is now given by eq. (2.20) with F replaced by F (x) from eq. (2.21).

Once Xn is known, it is straightforward to solve eq. (2.17) for ηn. This yields

ηn(x) = eiφ(x)

∫ x

0
dx1 e−2iφ(x1)

∫ x1

0
dx2 eiφ(x2)

(

−i∆̇ (x2)
)

ηn−1 (x2) + η0(x) , (2.22)

where we have used eq. (2.14). The corresponding nth order effective two-flavour oscillation

probability is then found as [P2(x)]n = |ηn(x)|2.
Eq. (2.22) represents the main result of our paper. It gives an analytic expression for

the oscillation amplitude in the nth order in perturbation theory in terms of the lower-order

solutions ηn−1 and η0. For our numerical illustrations we will consider the solutions with

n = 0, 1 and 2.
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Eq. (2.22) has been derived under the assumption that ∆̇ is a small parameter. As we

pointed out before, this is true for energies above the MSW resonance one. This means

that the perturbative approach considered above should, in general, fail for energies below

the MSW resonance one. However, a simple modification of the above procedure leads to

a description of neutrino oscillations valid below the MSW resonance. In order to show

this, let us, instead of casting eq. (2.8) in the form (2.10), rewrite it as

η̈ + (ω2 + iω̇)η = (−i∆̇)η , (2.23)

where ∆̇ is now defined as

∆̇ = Ȧ − ω̇ . (2.24)

For small vacuum mixing angles, this is a small parameter below the MSW resonance,

since in that case A ≫ B and so ω̇ ≃ Ȧ. Therefore, we can proceed with the perturbative

approach, as before. Comparing eqs. (2.23) and (2.24) with eqs. (2.10) and (2.11) respec-

tively, we see that the two pairs of equations differ only by the sign of ω(x). Therefore the

solution of eq. (2.23) can be obtained from eq. (2.22) by simply replacing ω(x) by −ω(x).

This will also change the values of the oscillation probabilities obtained in all orders in per-

turbation theory except for the zero-order probability which, as can be seen from (2.16),

is invariant with respect to the flip of the sign of ω(x). As we shall see, by combining the

results valid above and below the MSW resonance one can obtain a very good description

of neutrino oscillations in matter in the entire energy range.

Let us now discuss the expansion parameter of our perturbative approach. We have

found that the corrections to the zero order amplitude η0 are proportional to ∆̇ = Ȧ ± ω̇,

where the upper and lower signs refer to the energies above and below the MSW resonance,

respectively. These quantities can be expressed through the mixing angle in matter θm:1

∆̇ = Ȧ ± ω̇ = − V̇

2
[1 ± cos 2θm] . (2.25)

Far above the MSW resonance one has cos 2θm ≃ −1, whereas far below the resonance

cos 2θm ≃ cos 2θ0, which is close to 1 in the case of small vacuum mixing. This demonstrates

the smallness of ∆̇ in its corresponding domains of validity. At the MSW resonance one

has cos 2θm = 0, and ∆̇ is only small if V̇ is.

An examination of eq. (2.22) shows that the expansion parameter of our perturbative

approach is actually ∼ |∆̇|/ω2 (see eq. (2.15)). In various energy domains we have

|∆̇|
ω2

=



















|Ȧ−ω̇|
ω2 ≃ |V̇ |

2
s2

2
δ2

2 (c2δ−V/2)4
if (c2δ − V/2) ≫ s2δ (below the resonance)

|Ȧ±ω̇|
ω2 ≃ |V̇ |

2s2

2
δ2

if |c2δ − V/2| ≪ s2δ (near the resonance)

|Ȧ+ω̇|
ω2 ≃ |V̇ |

2
s2

2
δ2

2 (V/2−c2δ)4
if (V/2 − c2δ) ≫ s2δ (above the resonance)

(2.26)

where we have used the shorthand notation c2 ≡ cos 2θ0, s2 ≡ sin 2θ0. From eq. (2.26) it is

easy to see that outside the MSW resonance region the expansion parameter approximately

satisfies
|∆̇|
ω2

≃ sin2 2θm
|V̇ |
4ω2

= sin 2θm γ−1
MSW , (2.27)

1Note that sin 2θm = B/ω, cos 2θm = A/ω.
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where γMSW = 4ω3/(|V̇ |B) = 4ω2/(|V̇ | sin 2θm) is the MSW adiabaticity parameter. Thus,

for small mixing in matter (sin 2θm ≪ 1) our approximation is better than the adiabatic

one. Close to the resonance the two approaches have comparable accuracy.

3. Two examples: parabolic and power law profiles

As a first study, we apply our formalism to two simple density distributions: a parabolic

and a power law profile.

For the parabolic profile, we consider the following density distribution:

ρ(x) = ρ0

[

− k
(x − L/2)2

L2/4
+ 1

]

(3.1)

with

ρ0 = ρmax = 8 g/cm3 , k = 1 − ρmin

ρmax
= 0.5 , (3.2)

and we take the baseline to be L = 10000 km. Note that the parabolic density profile

represents a good approximation for the density distribution felt by neutrinos in the Earth

when they cross only the Earth’s mantle.

Next, we analyze the case of the following power-law density distribution:

ρ(x) = ρ0

(

x0

x0 + x

)3

(3.3)

with

x0 = 103 km and ρ0 = 103 g/cm3 , (3.4)

and we consider neutrino propagation over the distance L = 100 km. The profile ρ ∝ x−3

represents a realistic description of the density distribution inside supernovae; note, how-

ever, that neutrino flavour transitions in supernovae are more adequately described by

different methods (see, e.g., [15]), and so we consider the profile (3.3) just for illustration.

The results based on our perturbative analytic approach for the profiles (3.1) and (3.3)

are presented in figure 1, where they are compared with the exact ones, obtained by direct

numerical integration of the neutrino evolution equation (2.1). The upper panels show

the oscillation probabilities for the parabolic density profile and the lower ones, for the

power-law profile (3.3). The left panels correspond to the expansion valid for energies

below the MSW resonance ones, whereas the right panels were obtained for the expansion

valid above the resonance energies. As expected, the zero-order approximation gives a

good accuracy only outside the MSW resonance region (i.e., outside the intervals E ∼ 3–

6 GeV for the parabolic profile and E ∼ 30–50 MeV for the power-law one).2 The first-

order perturbative results obtained using the expansion valid below the MSW resonance

extend slightly the region of good accuracy towards higher energies, closer to the MSW

resonance, though in general fail for energies above the MSW resonance, whereas the first-

order results found from the expansion valid above the MSW resonance extend the region

2Note that, since the profiles (3.1) and (3.3) (as well as the PREM profile considered in the next section)

span a range of matter densities, neutrinos in an interval of energies experience the MSW resonance.
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Figure 1: Oscillation probability P2 versus neutrino energy E in the case of the parabolic (upper

plots) and power law (lower plots) density profiles. Left panels: probabilities obtained from the

expansion valid below the MSW resonance, right panels: the same for the expansion valid above

the resonance. We have taken ∆m2 = 2.5 10−3 eV2 and Ye = 0.5.

of good accuracy to lower energies, but in general fail below the MSW resonance. Thus,

the first-order calculation taken in their respective domains of applicability allow to achieve

a good description of the exact results closer to the resonance energy than the zero-order

solutions do, i.e. they reduce the energy domain in which the approximation fails. At the

same time, as can be seen from figure 1, the second-order probabilities |η2|2 practically

coincide with the corresponding exact results, irrespectively of whether they are obtained

using the expansion valid below or above the MSW resonance.

4. Propagation inside the Earth: PREM profile

Neutrinos coming from various sources can propagate inside the Earth before reaching a

– 7 –



J
H
E
P
1
2
(
2
0
0
8
)
1
0
6

1.0 10.05.02.0 20.03.01.5 15.07.0
0.0

0.2

0.4

0.6

0.8

1.0

E@GeVD

P
2

sin22Θ13=0.05

cos Θz = -1

ÈΗ2È
2

ÈΗ1È
2

ÈΗ0È
2

ÈΗÈ2

1.0 10.05.02.0 20.03.01.5 15.07.0
0.0

0.2

0.4

0.6

0.8

1.0

E@GeVD

P
2

sin22Θ13=0.05

cos Θz = -1

ÈΗ2È
2

ÈΗ1È
2

ÈΗ0È
2

ÈΗÈ2

1.0 10.05.02.0 20.03.01.5 15.07.0
0.0

0.2

0.4

0.6

0.8

1.0

E@GeVD

P
2

sin22Θ13=0.05

cos Θz = -0.95

ÈΗ2È
2

ÈΗ1È
2

ÈΗ0È
2

ÈΗÈ2

1.0 10.05.02.0 20.03.01.5 15.07.0
0.0

0.2

0.4

0.6

0.8

1.0

E@GeVD

P
2

sin22Θ13=0.05

cos Θz = -0.95

ÈΗ2È
2

ÈΗ1È
2

ÈΗ0È
2

ÈΗÈ2

Figure 2: Probability P2 versus neutrino energy E for neutrino oscillations in the Earth (PREM

density profile) for two values of the zenith angle. Left panels: probabilities obtained from the

expansion valid below the MSW resonance, right panels: the same for the expansion valid above

the resonance. We have taken ∆m2 = 2.5 10−3 eV2.

detector. Examples are atmospheric neutrinos, neutrinos coming from WIMP annihilation

inside the Earth or the Sun, as well as neutrinos studied in long-baseline accelerator exper-

iments. We will consider here oscillations of high-energy neutrinos in the Earth, for which

we take the matter density distribution as described by the PREM profile [11] (figure 3).

Note that the PREM profile is symmetric with respect to the midpoint of the neutrino

trajectory, and therefore the two-flavour transition amplitude η(x) obtained as a solution

of eq. (2.1) is pure imaginary due to the time reversal symmetry of the problem [16].

In figure 2 we present the oscillation probability P2 as a function of neutrino energy

E for two values of the zenith angle of the neutrino trajectory: cos θz = −1, when the

neutrinos propagate the longest distance inside the Earth, traversing it along its diameter,

– 8 –
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Figure 4: Oscillation probability P2 in different orders in perturbation theory versus the distance

travelled by neutrinos inside the Earth, for cos θz = -1.0 and for two values of neutrino energy (E=

2.8GeV and 6GeV). Left panels: probabilities obtained from the expansion valid below the MSW

resonance, right panels: the same for the expansion valid above the resonance. We have taken

∆m2 = 2.5 10−3 eV2.

and cos θz = −0.95, when they do not cross the inner core of the Earth. As in figure 1,

we compare the approximate solutions, up to the second order ([P2]2 = |η2|2), with the

exact solutions found by direct numerical integration of the neutrino evolution equation.

In this figure (as well as in figures 4–6 below) in the left panels we present the oscillation

probabilities obtained with the expansion valid below the MSW resonance energy, whereas

the right panels show the results found from the expansion valid above the MSW resonance.

It can be seen from figure 2 that the zero order probability |η0|2 reproduces accurately

the exact one, |η|2, only for energies that are outside the resonance region. Indeed, the two
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Figure 5: Oscillation probability P2 versus the zenith angle θz for neutrinos propagating inside

the Earth, for neutrino energies E = 2.5 and 6 GeV. Left panels: probabilities obtained from the

expansion valid below the MSW resonance, right panels: the same for the expansion valid above

the resonance. We have taken ∆m2 = 2.5 10−3 eV2.

solutions nearly coincide for E ≤ 2.5 GeV and for E > 7 GeV, but deviate substantially

between these energies. As can be seen from the figure, the accuracy of the first order solu-

tions is slightly better in their respective domain of validity: the solutions |η1|2 valid below

the resonance (left panels of the figure) allow an accurate description of the probability

for slightly higher energies than |η0|2 does, allowing to come closer to the MSW resonance

from below; however, they fail badly (not even being bounded by 1) above the resonance.

Likewise, the solutions |η1|2 valid above the resonance (right panels) allow to come closer

to the MSW resonance from above, but fail below the resonance.

At the same time, the second-order solution |η2|2 gives quite a good approximation to

the exact probability |η|2 for all energies, though the solutions obtained through the ex-
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Figure 6: Oscillation probability P2 versus neutrino energy E in the case of cos θz = −0.95 and

for two different values of sin2 2θ13. Left panels: probabilities obtained from the expansion valid

below the MSW resonance, right panels: the same for the expansion valid above the resonance. We

have taken ∆m2 = 2.5 10−3 eV2.

pansions in their corresponding domains of validity give a better accuracy in these energy

domains. By combining the second-order solutions valid below and above the MSW reso-

nance, one can obtain a very good description of the exact oscillation probability practically

at all energies, including the resonance region. We have also checked that for trajectories

that do not cross the core of the Earth (cos θz > -0.838), for which the matter density pro-

file seen by the neutrinos is relatively smooth, the second order solutions obtained through

both expansions essentially coincide with the exact one for all energies.

In figure 4 we present the oscillation probability P2, obtained in different orders in

perturbation theory, as a function of the distance travelled by neutrinos inside the Earth for

vertically up-going neutrinos (cos θz = −1) and two values of neutrino energy, E = 2.8 GeV
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and 6GeV. The figure clearly demonstrates how the accuracy improves with increasing

order in perturbation theory; the second order solutions |η2|2 nearly concide with the exact

probability |η|2 along the entire neutrino path.

Figure 5 illustrates the dependence of the analytic solutions on the zenith angle for

two values of the neutrino energy, E = 2.5 GeV and 6 GeV. For both energies we show

the solutions obtained using the expansions valid below and above the MSW resonance.

The results agree with our expectations: the second order solution based on the expansion

valid below the resonance reproduces the exact one extremely well for E = 2.5 GeV but

does not give a good accuracy (especially in the core region) for E = 6 GeV, while the

situation is opposite in the case of the solution corresponding to the expansion valid above

the resonance.

Finally, in figure 6 we show the dependence of the accuracy of the analytic solutions

on the value of the vacuum mixing angle θ0 = θ13. As one can see by comparing the upper

panels with the corresponding lower ones, with decreasing value of θ13 the accuracy of our

perturbative expansion improves. This is the consequence of the fact that the expansion

parameter (2.27) decreases with decreasing θ13.

5. Discussion and conclusions

We have developed a perturbative approach for two-flavour neutrino oscillations in matter

with an arbitrary density profile. The zero-order oscillation amplitude η0 satisfies the

equation which can be solved analytically for an arbitrary dependence of the matter density

distribution on the coordinate along the neutrino path; higher order amplitudes are then

obtained from the lower-order ones through a simple perturabative procedure. We have

studied the zeroth, first and second order solutions and compared them with each other

and with the exact oscillation probability obtained by numerical integration of the neutrino

evolution equation. In all orders except the zeroth one, the expansion scheme depends on

whether the neutrino energy is above or below the MSW resonance energy, and one has to

consider these two cases separately.

While the zero-order result gives a very good accuracy outside the resonance region,

higher order corrections are necessary to achieve an accurate description of the oscillation

probability in the vicinity of the MSW resonance. We have demonstrated how these cor-

rections, when taken in their respective energy domains of validity, improve drastically the

precision of the approximation.

For the smooth density profiles that we have studied, we found that the second order

oscillation probability reproduces the exact one extremely well in the whole interval of

energies, including the MSW resonance region, independently of whether the expansion

scheme valid below or above the resonance was used. The same is also true for the PREM

density profiles in the case when neutrinos cross only the mantle of the Earth, since the

density jumps experienced by neutrinos in that case are relatively small. The high accuracy

of the second order approximation for smooth density profiles is related to the fact that our

expansion parameter, eq. (2.27), is proportional to |V̇ |. This parameter is smaller than the

expansion parameter of the adiabatic approximation by the factor sin 2θm and therefore
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our approach gives a better accuracy than the adiabatic expansion when the mixing in

matter is small. Note that a different expansion of the same evolution equation (2.8) was

employed in [17].

For energies above the MSW resonance, our expansion parameter is essentially

|∆̇|
ω2

≃ sin2 2θm
|V̇ |
V 2

. (5.1)

For the PREM density profile of the Earth, the function |V̇ |/V 2 is plotted in the right panel

of figure 3. As can be seen from the figure, in most of the coordinate space the value of

this function does not exceed 0.25. The spikes corresponding to the density jumps, though

quite high, are very narrow; they do not destroy our approximation because their contribu-

tions get suppressed due to the integrations involved in the calculation of the higher-order

corrections to the oscillation amplitude (see eq. (2.22)). Still, these contributions are not

negligible, especially for neutrinos crossing the Earth’s core. As a result, for core-crossing

neutrinos with energies close to the MSW resonance ones, even the second-order oscillation

probabilities are only adequate when taken in their respective energy domains of validity.

By combining the solutions valid below and above the MSW resonance one obtains a very

accurate description of neutrino oscillations in matter in the entire energy range.

To conclude, we have derived a simple closed-form analytic expression for the prob-

ability of two-flavour neutrino oscillations in a matter with an arbitrary density profile.

Our formula is based on a perturbative expansion and allows an easy calculation of higher

order corrections. We have applied our formalism to a number of density distributions,

including the PREM density profile of the Earth, and demonstrated that the second-order

approximation gives a very good accuracy in the entire energy interval.
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